On the Pebbling Threshold Spectrum

نویسنده

  • Glenn H. Hurlbert
چکیده

A configuration of pebbles on the vertices of a graph is solvable if one can place a pebble on any given root vertex via a sequence of pebbling steps. A function is a pebbling threshold for a sequence of graphs if a randomly chosen configuration of asymptotically more pebbles is almost surely solvable, while one of asymptotically fewer pebbles is almost surely not. In this note we show that the spectrum of pebbling thresholds for graph sequences spans the entire range from n 1/2 to n. This answers a question of Czygrinow, Eaton, Hurlbert and Kayll. What the spectrum looks like above n remains unknown. 1991 AMS Subject Classification: 05D05, 05C35, 05A20

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the pebbling threshold of paths and the pebbling threshold spectrum

A configuration of pebbles on the vertices of a graph is solvable if one can place a pebble on any given root vertex via a sequence of pebbling steps. A function is a pebbling threshold for a sequence of graphs if a randomly chosen configuration of asymptotically more pebbles is almost surely solvable, while one of asymptotically fewer pebbles is almost surely not. In this paper we tighten the ...

متن کامل

A Survey of Graph Pebbling

We survey results on the pebbling numbers of graphs as well as their historical connection with a number-theoretic question of Erdős and Lemke. We also present new results on two probabilistic pebbling considerations, first the random graph threshold for the property that the pebbling number of a graph equals its number of vertices, and second the pebbling threshold function for various natural...

متن کامل

The pebbling threshold of the square of cliques

Given an initial configuration of pebbles on a graph, one can move pebbles in pairs along edges, at the cost of one of the pebbles moved, with the objective of reaching a specified target vertex. The pebbling number of a graph is the minimum number of pebbles so that every configuration of that many pebbles can reach any chosen target. The pebbling threshold of a sequence of graphs is roughly t...

متن کامل

Threshold and complexity results for the cover pebbling game

Given a configuration of pebbles on the vertices of a graph, a pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. The cover pebbling number of a graph, γ(G), is the smallest number of pebbles such that through a sequence of pebbling moves, a pebble can eventually be placed on every vertex simultaneously, no matter how the pebbles are ...

متن کامل

Pebbling in dense graphs

A configuration of pebbles on the vertices of a graph is solvable if one can place a pebble on any given root vertex via a sequence of pebbling steps. The pebbling number of a graph G is the minimum number π(G) so that every configuration of π(G) pebbles is solvable. A graph is Class 0 if its pebbling number equals its number of vertices. A function is a pebbling threshold for a sequence of gra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2001